Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Octane number prediction for gasoline blends

Pasadakis Nikos, Gaganis Vasileios, Foteinopoulos Charalambos

Simple record


URIhttp://purl.tuc.gr/dl/dias/08461378-2F3D-48EB-9553-1F54B8FD31CA-
Identifierhttps://doi.org/10.1016/j.fuproc.2005.11.006-
Identifierhttp://www.sciencedirect.com/science/article/pii/S0378382006000051-
Languageen-
Extent5 pagesen
TitleOctane number prediction for gasoline blendsen
CreatorPasadakis Nikosen
CreatorΠασαδακης Νικοςel
CreatorGaganis Vasileiosen
CreatorΓαγανης Βασιλειοςel
CreatorFoteinopoulos Charalambos en
PublisherElsevieren
Content SummaryArtificial Neural Network (ANN) models have been developed to determine the Research Octane Number (RON) of gasoline blends producedin a Greek refinery. The developed ANN models use as input variables the volumetric content of seven most commonly used fractions in thegasoline production and their respective RON numbers. The model parameters (ANN weights) are presented such that the model can be easilyimplemented by the reader. The predicting ability of the models, in the multi-dimensional space determined by the input variables, was thoroughlyexamined in order to assess their robustness. Based on the developed ANN models, the effect of each gasoline constituent on the formation of the blend RON value, was revealeden
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2015-10-12-
Date of Publication2006-
SubjectRONen
SubjectGasolineen
SubjectNeural networksen
Bibliographic CitationN. Pasadakis, V. Gaganis, Ch. Foteinopoulos, “Octane number prediction for gasoline blends”, Fuel Processing Technology, vol. 87, no. 6, Jun. 2006, pp. 505-509. doi:10.1016/j.fuproc.2005.11.006en

Services

Statistics