URI | http://purl.tuc.gr/dl/dias/3B46CE3C-3FD2-4C10-BAA0-79A6AF0B7BAC | - |
Αναγνωριστικό | https://doi.org/10.1109/IEMDC.2007.383573 | - |
Γλώσσα | en | - |
Μέγεθος | 6 pages | en |
Τίτλος | Detection and classification of winding faults in windmill generators using
wavelet transform and ANN | en |
Δημιουργός | Stavrakakis Georgios | en |
Δημιουργός | Σταυρακακης Γεωργιος | el |
Δημιουργός | Zervakis Michalis | en |
Δημιουργός | Ζερβακης Μιχαλης | el |
Δημιουργός | Z. E. Gketsis | en |
Εκδότης | Institute of Electrical and Electronics Engineers | en |
Περίληψη | This paper introduces the Wavelet Transform (WT) and Artificial Neural Networks (ANN) analysis to the diagnostics of electrical machines winding faults. A novel application is presented, exploring the potential of automatically identifying short circuits of windings, which often appear during machine manufacturing and operation. The early detection and classification of winding failures is of particular importance, as these kinds of defects can lead to winding damage due to overheating, imbalance, etc. The ANN approach is proven effective in detecting and classifying faults based on WT features extracted from high frequency measurements of the admittance, current, or voltage responses. | en |
Τύπος | Αφίσα σε Συνέδριο | el |
Τύπος | Conference Poster | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2015-10-15 | - |
Ημερομηνία Δημοσίευσης | 2007 | - |
Βιβλιογραφική Αναφορά | Z. E. Gketsis, M.E Zervakis, G. Stavrakakis, "Detection and classification of winding faults in windmill generators using wavelet transform and ANN," in 2007 IEEE-Intern.Conf. Electric Mach. and Drives ,pp.178 - 183.doi: 10.1109/IEMDC.2007.383573 | en |