URI | http://purl.tuc.gr/dl/dias/24687377-9EFC-4BE2-BBA1-FB94292F8FA6 | - |
Identifier | https://doi.org/10.1080/00207169008803855 | - |
Language | en | - |
Extent | 10 pages | en |
Title | On exact convergence of the accelerated overrelaxation method when applied to consistently ordered systems | en |
Creator | Saridakis Ioannis | en |
Creator | Σαριδακης Ιωαννης | el |
Creator | Kössing, Joseph, 1804-1891 | en |
Publisher | Taylor & Francis | en |
Content Summary | The problem of determining the exact regions of convergence and divergence of the block Accelerated Overrelaxation (AOR) iterative method, when it applies to systems with a Generalized Consistently Ordered (GCO) coefficient matrix, is addressed here. Some new algebraic results in the theory of regular splittings are obtained and used for the determination of extended regions of convergence. Complementary, in some cases, divergence regions are obtained by making use of a recently derived eigenvalue functional equation. | en |
Type of Item | Peer-Reviewed Journal Publication | en |
Type of Item | Δημοσίευση σε Περιοδικό με Κριτές | el |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2015-10-16 | - |
Date of Publication | 1990 | - |
Subject | Greek mathematics | en |
Subject | mathematics greek | en |
Subject | greek mathematics | en |
Bibliographic Citation | Y. G. Saridakis, J. P. Kossin, “On exact convergence of the accelerated overrelaxation method when applied to consistently ordered systems," Int. J. Computer Math ,vol.33, no.3-4 ,pp 251- 261, 1990.doi:10.1080/00207169008803855 | en |