URI | http://purl.tuc.gr/dl/dias/136BC77B-7DAE-49C7-86EF-72EA897F4FDF | - |
Αναγνωριστικό | https://doi.org/10.1016/0377-0427(92)90086-D | - |
Γλώσσα | en | - |
Μέγεθος | 18 pages | en |
Τίτλος | Modified successive overrelaxation (MSOR) and equivalent 2-step iterative methods for collocation matrices | en |
Δημιουργός | Saridakis Ioannis | en |
Δημιουργός | Σαριδακης Ιωαννης | el |
Δημιουργός | Hadjidimos, Apostolos | en |
Εκδότης | Elsevier | en |
Περίληψη | We consider a class of consistently ordered matrices which arise from the discretization of Boundary Value Problems (BVPs) when the finite-element collocation method with Hermite elements is used. Through a recently derived equivalence relationship for the asymptotic rates of convergence of the Modified Successive Overrelaxation (MSOR) and a certain 2-step iterative method, we determine the optimum values for the parameters of the MSOR method, as it pertains to collocation matrices. A geometrical algorithm, which utilizes “capturing ellipse” arguments, has been successfully used. The fast convergence properties of the optimum MSOR method are revealed after its comparison to several well-known iterative schemes. Numerical examples, which include the solution of Poisson's equation, are used to verify our results. | en |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2015-10-16 | - |
Ημερομηνία Δημοσίευσης | 1992 | - |
Θεματική Κατηγορία | Greek mathematics | en |
Θεματική Κατηγορία | mathematics greek | en |
Θεματική Κατηγορία | greek mathematics | en |
Θεματική Κατηγορία | --Cases, clinical reports, statistics | en |
Θεματική Κατηγορία | --Statistical data | en |
Θεματική Κατηγορία | statistics | en |
Θεματική Κατηγορία | cases clinical reports statistics | en |
Θεματική Κατηγορία | statistical data | en |
Βιβλιογραφική Αναφορά | A. Hadjidimos, Y. G. Saridakis, “Modified successive overrelaxation (MSOR) and equivalent 2-step iterative methods for collocation matrices," J. of Computaitonal and Applied Math ,vol.42, no.3, pp. 375-393, 1992. doi: 10.1016/0377-0427(92)90086-D | en |