URI | http://purl.tuc.gr/dl/dias/665B093B-65AF-4FE4-90F5-90D6B3263714 | - |
Αναγνωριστικό | https://doi.org/10.1002/nme.1828 | - |
Γλώσσα | en | - |
Μέγεθος | 25 pges | en |
Τίτλος | Discontinuous Galerkin framework for adaptive solution of parabolic problems | en |
Δημιουργός | Deepak V. Kulkarni | en |
Δημιουργός | Rovas Dimitrios | en |
Δημιουργός | Ροβας Δημητριος | el |
Δημιουργός | Daniel A. Tortorelli | en |
Εκδότης | John Wiley and Sons | en |
Περίληψη | Non-conforming meshes are frequently employed in adaptive analyses and simulations of multi-component systems. We develop a discontinuous Galerkin formulation for the discretization of parabolic problems that weakly enforces continuity across non-conforming mesh interfaces. A benefit of the DG scheme is that it does not introduce constraint equations and their resulting Lagrange multiplier fields as done in mixed and mortar methods. The salient features of the formulation are highlighted through an a priori analysis. When coupled with a mesh refinement scheme the DG formulation is able to accommodate multiple hanging nodes per element edge and leads to an effective adaptive framework for the analysis of interface evolution problems. We demonstrate our approach by analysing the Stefan problem of solidification. | en |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2015-10-17 | - |
Ημερομηνία Δημοσίευσης | 2007 | - |
Βιβλιογραφική Αναφορά | D.V. Kulkarni, D.V. Rovas, D.A. Tortorelli ," Discontinuous Galerkin framework for adaptive solution of parabolic problems,"Intern. j. for num. methods in eng.,vol. 70,no. 1,pp. 1-24,2007.doi:10.1002/nme.1828 | en |