Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Electro-mechanical admittance-based damage detection using extreme value statistics

Providakis Konstantinos

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/0CF85495-8DC2-4C5B-A9FA-1B7B6D46E6B4
Έτος 2008
Τύπος Πλήρης Δημοσίευση σε Συνέδριο
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά C. Providakis, “Electro-mechanical admittance-based damage detection using extreme value statistics,"in 2008 7th Int. Conf. on Fracture and Damage Mechanics ,pp.561-564.doi:10.4028/www.scientific.net/KEM.385-387.561 https://doi.org/ 10.4028/www.scientific.net/KEM.385-387.561
Εμφανίζεται στις Συλλογές

Περίληψη

This paper presents the use of statistically rigorous algorithms combined with electromechanical (E/M) impedance approach for health monitoring of engineering structures. In particular, a statistical pattern recognition procedure is developed, based on frequency domain data of electromechanical impedance, to establish a decision boundary for damage identification. In order to diagnose damage with statistical confidence, health monitoring is cast in the context of outlier detection framework. Inappropriate modeling of tail distribution of outliers imposes potentially misleading behavior associated with damage. The present paper attempts to address the problem of establishing decision boundaries based on extreme value statistics so that the extreme values of outliers associated with tail distribution can be properly modeled. The validity of the proposed method is demonstrated using finite element method (FEM) simulated data while a comparison is performed for the extreme value analysis results contrasted with the standard approach where it is assumed that the damage-sensitive features are normally distributed.

Υπηρεσίες

Στατιστικά