Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

A spatio-temporal hybrid neural network-Kriging model for groundwater level simulation

Tapoglou Evdokia, Karatzas Giorgos, Trichakis Ioannis, Varouchakis Emmanouil

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/02A02B31-83B9-424C-A008-AAF4FB23E56A-
Αναγνωριστικόhttps://doi.org/10.1016/j.jhydrol.2014.10.040-
Αναγνωριστικόhttp://www.sciencedirect.com/science/article/pii/S002216941400835X-
Γλώσσαen-
Μέγεθος11 pagesen
ΤίτλοςA spatio-temporal hybrid neural network-Kriging model for groundwater level simulationen
ΔημιουργόςTapoglou Evdokiaen
ΔημιουργόςΤαπογλου Ευδοκιαel
ΔημιουργόςKaratzas Giorgosen
ΔημιουργόςΚαρατζας Γιωργοςel
ΔημιουργόςTrichakis Ioannisen
ΔημιουργόςΤριχακης Ιωαννηςel
ΔημιουργόςVarouchakis Emmanouilen
ΔημιουργόςΒαρουχακης Εμμανουηλel
ΕκδότηςElsevieren
ΠεριγραφήΔημοσίευση σε επιστημονικό περιοδικό el
ΠερίληψηArtificial Neural Networks (ANNs) and Kriging have both been used for hydraulic head simulation. In this study, the two methodologies were combined in order to simulate the spatial and temporal distribution of hydraulic head in a study area. In order to achieve that, a fuzzy logic inference system can also be used. Different ANN architectures and variogram models were tested, together with the use or not of a fuzzy logic system. The developed algorithm was implemented and applied for predicting, spatially and temporally, the hydraulic head in an area located in Bavaria, Germany. The performance of the algorithm was evaluated using leave one out cross validation and various performance indicators were derived. The best results were achieved by using ANNs with two hidden layers, with the use of the fuzzy logic system and by utilizing the power-law variogram. The results obtained from this procedure can be characterized as favorable, since the RMSE of the method is in the order of magnitude of 10−2 m. Therefore this method can be used successfully in aquifers where geological characteristics are obscure, but a variety of other, easily accessible data, such as meteorological data can be easily found.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2015-10-20-
Ημερομηνία Δημοσίευσης2014-
Θεματική ΚατηγορίαArtificial Neural Networksen
Θεματική ΚατηγορίαKrigingen
Θεματική ΚατηγορίαGroundwater hydraulic head simulationen
Θεματική Κατηγορία Spatial and temporal simulationen
Βιβλιογραφική ΑναφοράE. Tapoglou , G. P. Karatzas, I. C. Trichakis and E. A. Varouchakis,"A spatio-temporal hybrid neural network-Kriging model for groundwater level simulation," Journal of Hydrology, vol. 519, Part D, pp. 3193–3203, Nov. 2014. doi: 10.1016/j.jhydrol.2014.10.040en

Υπηρεσίες

Στατιστικά