Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Groundwater-level forecasting under climate change scenarios using an artificial neural network trained with particle swarm optimization

Tapoglou Evdokia, Trichakis Ioannis, Dokou Zoi, Nikolos Ioannis, Karatzas Giorgos

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/E91D2FE9-78A7-45A4-82A4-00C864F5AE68-
Αναγνωριστικόhttps://doi.org/10.1080/02626667.2013.838005-
Γλώσσαen-
Γλώσσαfr-
Μέγεθος14en
ΤίτλοςGroundwater-level forecasting under climate change scenarios using an artificial neural network trained with particle swarm optimizationen
ΔημιουργόςTapoglou Evdokiaen
ΔημιουργόςΤαπογλου Ευδοκιαel
ΔημιουργόςTrichakis Ioannisen
ΔημιουργόςΤριχακης Ιωαννηςel
ΔημιουργόςDokou Zoien
ΔημιουργόςΔοκου Ζωηel
ΔημιουργόςNikolos Ioannisen
ΔημιουργόςΝικολος Ιωαννηςel
ΔημιουργόςKaratzas Giorgosen
ΔημιουργόςΚαρατζας Γιωργοςel
ΕκδότηςTaylor & Francisen
ΠεριγραφήΔημοσίευση σε επιστημονικό περιοδικό el
ΠερίληψηArtificial neural networks (ANNs) have recently been used to predict the hydraulic head in well locations. In the present work, the particle swarm optimization (PSO) algorithm was used to train a feed-forward multi-layer ANN for the simulation of hydraulic head change at an observation well in the region of Agia, Chania, Greece. Three variants of the PSO algorithm were considered, the classic one with inertia weight improvement, PSO with time varying acceleration coefficients (PSO-TVAC) and global best PSO (GLBest-PSO). The best performance was achieved by GLBest-PSO when implemented using field data from the region of interest, providing improved training results compared to the back-propagation training algorithm. The trained ANN was subsequently used for mid-term prediction of the hydraulic head, as well as for the study of three climate change scenarios. Data time series were created using a stochastic weather generator, and the scenarios were examined for the period 2010–2020.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2015-10-20-
Ημερομηνία Δημοσίευσης2014-
Θεματική Κατηγορίαartificial neural networksen
Θεματική Κατηγορίαparticle swarm optimizationen
Θεματική Κατηγορίαhydraulic head simulationen
Βιβλιογραφική ΑναφοράE. Tapoglou , I.C. Trichakis, Z. Dokou, I.K. Nikolos, and G.P. Karatzas, "Groundwater-level forecasting under climate change scenarios using an artificial neural network trained with particle swarm optimization," Hydrological Sciences Journal, vol. 59, no. 6, pp. 1225-1239, Jun. 2014. doi: 10.1080/02626667.2013.838005en

Υπηρεσίες

Στατιστικά