Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

New hybrid recommender approaches: An application to equity funds selection, algorithmic decision theory

Matsatsinis Nikolaos, Manarolis Eleftherios

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/CD058E7D-0F1C-4A1F-B007-2478143CF42C-
Αναγνωριστικόhttps://doi.org/10.1007/978-3-642-04428-1_14-
Γλώσσαen-
ΤίτλοςNew hybrid recommender approaches: An application to equity funds selection, algorithmic decision theoryel
ΔημιουργόςMatsatsinis Nikolaosen
ΔημιουργόςΜατσατσινης Νικολαοςel
ΔημιουργόςManarolis Eleftheriosen
ΔημιουργόςΜαναρωλης Ελευθεριοςel
ΕκδότηςSpringer Verlagen
ΠερίληψηRecommender Systems and Multicriteria Decision Analysis remain two separate scientific fields in spite of their similarity in supporting the decision making process and reducing information overload. In this paper we present a novel algorithmic framework, which combines features from Recommender Systems literature and Multicriteria Decision Analysis to alleviate the sparsity problem and the absence of multidimensional correlation measures. We apply the introduced framework for recommending Greek equity funds to a set of simulation generated investors. The proposed framework treats MCDA’s algorithm UTADIS as a content - based recommendation technique which, in conjunction with collaborative filtering results in two Hybrid Recommendation approaches. The resulting approaches manage to outperform the separate application of the UTADIS and collaborative filtering methods in terms of recommendation accuracyen
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2015-10-21-
Ημερομηνία Δημοσίευσης2009-
Βιβλιογραφική ΑναφοράMatsatsinis, N.F., E. A. Manarolis, "New Hybrid Recommender Approaches: An Application to Equity Funds Selection, Algorithmic Decision Theory", Lecture Notes in Computer Science, vol. 5783/2009, pp. 156-167. DOI: 10.1007/978-3-642-04428-1_14en

Υπηρεσίες

Στατιστικά