Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Computational benefits using artificial intelligent methodologies for the solution of an environmental design problem: saltwater intrusion.

Papadopoulou MP, Nikolos Ioannis, Karatzas Giorgos

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/F94A8E13-059C-4A6C-9065-6F430B8C16B7-
Αναγνωριστικόhttps://doi.org/10.2166/wst.2010.442.-
Γλώσσαen-
Μέγεθος11en
ΤίτλοςComputational benefits using artificial intelligent methodologies for the solution of an environmental design problem: saltwater intrusion.en
ΔημιουργόςPapadopoulou MPen
ΔημιουργόςNikolos Ioannisen
ΔημιουργόςΝικολος Ιωαννηςel
ΔημιουργόςKaratzas Giorgosen
ΔημιουργόςΚαρατζας Γιωργοςel
ΠεριγραφήΔημοσίευση σε επιστημονικό περιοδικό el
ΠερίληψηArtificial Neural Networks (ANNs) comprise a powerful tool to approximate the complicated behavior and response of physical systems allowing considerable reduction in computation time during time-consuming optimization runs. In this work, a Radial Basis Function Artificial Neural Network (RBFN) is combined with a Differential Evolution (DE) algorithm to solve a water resources management problem, using an optimization procedure. The objective of the optimization scheme is to cover the daily water demand on the coastal aquifer east of the city of Heraklion, Crete, without reducing the subsurface water quality due to seawater intrusion. The RBFN is utilized as an on-line surrogate model to approximate the behavior of the aquifer and to replace some of the costly evaluations of an accurate numerical simulation model which solves the subsurface water flow differential equations. The RBFN is used as a local approximation model in such a way as to maintain the robustness of the DE algorithm. The results of this procedure are compared to the corresponding results obtained by using the Simplex method and by using the DE procedure without the surrogate model. As it is demonstrated, the use of the surrogate model accelerates the convergence of the DE optimization procedure and additionally provides a better solution at the same number of exact evaluations, compared to the original DE algorithm.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2015-10-21-
Ημερομηνία Δημοσίευσης2010-
Θεματική ΚατηγορίαArtificial Neural Networksen
Θεματική Κατηγορία Radial Basis Function Artificial Neural Network en
Θεματική ΚατηγορίαCreteen
Θεματική ΚατηγορίαDE algorithmen
Βιβλιογραφική ΑναφοράM.P. Papadopoulou , I.K. Nikolos, and G.P. Karatzas, "Computational benefits using artificial intelligent methodologies for the solution of an environmental design problem: saltwater intrusion.,"Water Science and Technology, vol. 62, no. 7,pp. 1479-1490, 2010. doi: 10.2166/wst.2010.442.en

Υπηρεσίες

Στατιστικά