Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

High-grade glioma diffusive modeling using statistical tissue information and diffusion tensors extracted from atlases

Zervakis Michalis, G.C. Manikis, Sakkalis, Vangelis, K. Marias

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/339E67CC-B706-4A96-B922-5CAB45CB2307-
Αναγνωριστικόhttps://doi.org/10.1109/TITB.2011.2171190-
Γλώσσαen-
Μέγεθος9 pagesen
ΤίτλοςHigh-grade glioma diffusive modeling using statistical tissue information and diffusion tensors extracted from atlasesen
ΔημιουργόςZervakis Michalisen
ΔημιουργόςΖερβακης Μιχαληςel
ΔημιουργόςG.C. Manikisen
ΔημιουργόςSakkalis, Vangelisen
ΔημιουργόςK. Mariasen
ΕκδότηςInstitute of Electrical and Electronics Engineersen
ΠερίληψηGlioma, especially glioblastoma, is a leading cause of brain cancer fatality involving highly invasive and neoplastic growth. Diffusive models of glioma growth use variations of the diffusion-reaction equation in order to simulate the invasive patterns of glioma cells by approximating the spatiotemporal change of glioma cell concentration. The most advanced diffusive models take into consideration the heterogeneous velocity of glioma in gray and white matter, by using two different discrete diffusion coefficients in these areas. Moreover, by using diffusion tensor imaging (DTI), they simulate the anisotropic migration of glioma cells, which is facilitated along white fibers, assuming diffusion tensors with different diffusion coefficients along each candidate direction of growth. Our study extends this concept by fully exploiting the proportions of white and gray matter extracted by normal brain atlases, rather than discretizing diffusion coefficients. Moreover, the proportions of white and gray matter, as well as the diffusion tensors, are extracted by the respective atlases; thus, no DTI processing is needed. Finally, we applied this novel glioma growth model on real data and the results indicate that prognostication rates can be improved.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2015-10-23-
Ημερομηνία Δημοσίευσης2012-
Βιβλιογραφική ΑναφοράA. Roniotis, G.C. Manikis, V. Sakkalis, M.E. Zervakis, I. Karatzanis, K. Marias ," High-grade glioma diffusive modeling using statistical tissue information and diffusion tensors extracted from atlases ," Inf.Technology in Biomed., IEEE Trans. on ,vol. 16 no.2,pp. 255-263,2012.doi:10.1109/TITB.2011.2171190en

Υπηρεσίες

Στατιστικά