Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

The sparse principal component of a constant-rank matrix

Asteris Megasthenis, Papailiopoulos, D.S, Karystinos Georgios

Simple record


URIhttp://purl.tuc.gr/dl/dias/13F9D7BC-B98C-40E2-9705-5E257B3D5EFE-
Identifierhttps://doi.org/10.1109/TIT.2014.2303975-
Languageen-
Extent9en
TitleThe sparse principal component of a constant-rank matrixen
CreatorAsteris Megasthenisen
CreatorΑστερης Μεγασθενηςel
CreatorPapailiopoulos, D.Sen
CreatorKarystinos Georgiosen
CreatorΚαρυστινος Γεωργιοςel
PublisherInstitute of Electrical and Electronics Engineersen
DescriptionΔημοσίευση σε επιστημονικό περιοδικό el
Content SummaryThe computation of the sparse principal component of a matrix is equivalent to the identification of its principal submatrix with the largest maximum eigenvalue. Finding this optimal submatrix is what renders the problem NP-hard. In this paper, we prove that, if the matrix is positive semidefinite and its rank is constant, then its sparse principal component is polynomially computable. Our proof utilizes the auxiliary unit vector technique that has been recently developed to identify problems that are polynomially solvable. In addition, we use this technique to design an algorithm which, for any sparsity value, computes the sparse principal component with complexity O(ND+1), where N and D are the matrix size and rank, respectively. Our algorithm is fully parallelizable and memory efficient.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2015-10-23-
Date of Publication2014-
SubjectEigenvalues and eigenfunctionsen
Subjectfeature extractionen
Subjectinformation processingen
Subjectmachine learning algorithmsen
Subjectprincipal component analysisen
Subjectsignal processing algorithmsen
Bibliographic CitationM. Asteris, D. S. Papailiopoulos, and G. N. Karystinos, "The sparse principal component of a constant-rank matrix," IEEE Transactions on Information Theory,vol. 60, no. 4, pp. 2281 - 2290, Apr. 2014. doi: 10.1109/TIT.2014.2303975en

Services

Statistics