URI | http://purl.tuc.gr/dl/dias/FBA1462B-11C5-49D8-BD95-BD4A50E8F580 | - |
Αναγνωριστικό | https://doi.org/10.1007/s10898-004-6100-2 | - |
Γλώσσα | en | - |
Τίτλος | Proof of convergence for a gobal optimization algorithm for problems with ordinary differential equations | en |
Δημιουργός | Ioannis Papamichail | en |
Δημιουργός | Claire S. Adjiman | en |
Εκδότης | Springer Verlag | en |
Περίληψη | A deterministic spatial branch and bound global optimization algorithm for problems with ordinary differential equations in the constraints has been developed by Papamichail and Adjiman [A rigorous global optimization algorithm for problems with ordinary differential equations. J. Glob. Optim. 24, 1–33]. In this work, it is shown that the algorithm is guaranteed to converge to the global solution. The proof is based on showing that the selection operation is bound improving and that the bounding operation is consistent. In particular, it is shown that the convex relaxation techniques used in the algorithm for the treatment of the dynamic information ensure bound improvement and consistency are achieved. | en |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2015-10-23 | - |
Ημερομηνία Δημοσίευσης | 2005 | - |
Βιβλιογραφική Αναφορά | Papamichail I. and Adjiman C.S. "Proof of convergence for a global optimization algorithm for problems with ordinary differential equations",
Journal of Global Optimization, Vol. 33, no. 1, pp. 83-107, Sept. 2005. DOI:
10.1007/s10898-004-6100-2 | en |