Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Short-data-record adaptive filtering: The auxiliary-vectoralgorithm

Karystinos Georgios, Haoli Qian, Medley Michael J., Batalama Stella N.

Simple record


URIhttp://purl.tuc.gr/dl/dias/B6EF8331-FC0D-4245-906F-461FFA30127B-
Identifierhttp://www.telecom.tuc.gr/~karystinos/paper_DSP.pdf-
Identifierhttps://doi.org/10.1006/dspr.2002.0450-
Languageen-
Extent29en
TitleShort-data-record adaptive filtering: The auxiliary-vector algorithmen
CreatorKarystinos Georgiosen
CreatorΚαρυστινος Γεωργιοςel
CreatorHaoli Qianen
Creator Medley Michael J.en
Creator Batalama Stella N.en
PublisherElsevieren
DescriptionΔημοσίευση σε επιστημονικό περιοδικό el
Content SummaryBased on statistical conditional optimization criteria, we developed an iterative algorithm that starts from the matched filter (or constraint vector) and generates a sequence of filters that converges to the minimum variance distortionless response (MVDR) solution for any positive defi- nite input autocorrelation matrix. Computationally, the algorithm is a simple recursive procedure that avoids explicit matrix inversion, decomposition, or diagonalization operations. When the input autocorrelation matrix is replaced by a conventional sample-average (positive definite) estimate, the algorithm effectively generates a sequence of MVDR filter estimators: The bias converges rapidly to zero and the covariance trace rises slowly and asymptotically to the covariance trace of the familiar sample matrix inversion (SMI) estimator. For short data records, the early, nonasymptotic, elements of the generated sequence of estimators offer favorable bias–covariance balance and are seen to outperform in mean-square estimation error constraint-LMS, RLS-type, and orthogonal multistage decomposition estimates (also called nested Wiener filters) as well as plain and diagonally loaded SMI estimates. The problem of selecting the most successful (in some appropriate sense) filter estimator in the sequence for a given data record is addressed and two data-driven selection criteria are proposed. The first criterion minimizes the cross-validated sample average variance of the filter estimator output. The second criterion maximizes the estimated J-divergence of the filter estimator output conditional distributions. Illustrative interference suppression examples drawn from the communications literature are followed throughout this presentation.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2015-10-23-
Date of Publication2002-
Subjectadaptive filtersen
Subjectbiased estimatorsen
Subjectcode division multiple accessen
Subjectcross-validationen
Subjectinterference suppressionen
Subject iterative methodsen
Subjectleast mean square methodsen
Subject auxiliary-vector filtersen
SubjectMMSE filtersen
SubjectMVDR filtersen
Subjectfilter estimationen
Subjectsmall sample supporten
Subjectfinite sample supporten
Subject short data record estimatorsen
SubjectWiener filtersen
Subjectantenna arraysen
Subjectsmart antennaen
Bibliographic Citation G. N. Karystinos, H. Qian, M. J. Medley, and S. N. Batalama, “Short-data-record adaptive filtering: The auxiliary-vector algorithm,” Digital Signal Processing, vol. 12, pp. 193-222, Apr./July 2002. doi: 10.1006/dspr.2002.0450 en

Services

Statistics