URI | http://purl.tuc.gr/dl/dias/B6EF8331-FC0D-4245-906F-461FFA30127B | - |
Identifier | http://www.telecom.tuc.gr/~karystinos/paper_DSP.pdf | - |
Identifier | https://doi.org/10.1006/dspr.2002.0450 | - |
Language | en | - |
Extent | 29 | en |
Title | Short-data-record adaptive filtering: The auxiliary-vector
algorithm | en |
Creator | Karystinos Georgios | en |
Creator | Καρυστινος Γεωργιος | el |
Creator | Haoli Qian | en |
Creator | Medley Michael J. | en |
Creator | Batalama Stella N. | en |
Publisher | Elsevier | en |
Description | Δημοσίευση σε επιστημονικό περιοδικό | el |
Content Summary | Based on statistical conditional optimization criteria, we developed an
iterative algorithm that starts from the matched filter (or constraint vector)
and generates a sequence of filters that converges to the minimum
variance distortionless response (MVDR) solution for any positive defi-
nite input autocorrelation matrix. Computationally, the algorithm is a simple
recursive procedure that avoids explicit matrix inversion, decomposition,
or diagonalization operations. When the input autocorrelation matrix
is replaced by a conventional sample-average (positive definite) estimate,
the algorithm effectively generates a sequence of MVDR filter estimators:
The bias converges rapidly to zero and the covariance trace rises slowly
and asymptotically to the covariance trace of the familiar sample matrix
inversion (SMI) estimator. For short data records, the early, nonasymptotic,
elements of the generated sequence of estimators offer favorable
bias–covariance balance and are seen to outperform in mean-square estimation
error constraint-LMS, RLS-type, and orthogonal multistage decomposition
estimates (also called nested Wiener filters) as well as plain
and diagonally loaded SMI estimates. The problem of selecting the most
successful (in some appropriate sense) filter estimator in the sequence for
a given data record is addressed and two data-driven selection criteria are
proposed. The first criterion minimizes the cross-validated sample average
variance of the filter estimator output. The second criterion maximizes
the estimated J-divergence of the filter estimator output conditional distributions.
Illustrative interference suppression examples drawn from the
communications literature are followed throughout this presentation. | en |
Type of Item | Peer-Reviewed Journal Publication | en |
Type of Item | Δημοσίευση σε Περιοδικό με Κριτές | el |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2015-10-23 | - |
Date of Publication | 2002 | - |
Subject | adaptive filters | en |
Subject | biased estimators | en |
Subject | code division multiple access | en |
Subject | cross-validation | en |
Subject | interference suppression | en |
Subject | iterative methods | en |
Subject | least mean square methods | en |
Subject | auxiliary-vector filters | en |
Subject | MMSE filters | en |
Subject | MVDR filters | en |
Subject | filter estimation | en |
Subject | small sample support | en |
Subject | finite sample support | en |
Subject | short data record estimators | en |
Subject | Wiener filters | en |
Subject | antenna arrays | en |
Subject | smart antenna | en |
Bibliographic Citation | G. N. Karystinos, H. Qian, M. J. Medley, and S. N. Batalama, “Short-data-record adaptive filtering: The auxiliary-vector algorithm,” Digital Signal Processing, vol. 12, pp. 193-222, Apr./July 2002. doi: 10.1006/dspr.2002.0450
| en |