Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

An iterative algorithm for the computation of the MVDR filter

Pados Dimitris A., Karystinos Georgios

Simple record


URIhttp://purl.tuc.gr/dl/dias/17225057-B514-43E1-B1C8-FB5718D80A07-
Identifierhttp://www.telecom.tuc.gr/~karystinos/paper_TSP1.pdf-
Identifierhttps://doi.org/10.1109/78.902111-
Languageen-
Extent10en
TitleAn iterative algorithm for the computation of the MVDR filteren
Creator Pados Dimitris A.en
CreatorKarystinos Georgiosen
CreatorΚαρυστινος Γεωργιοςel
PublisherInstitute of Electrical and Electronics Engineersen
DescriptionΔημοσίευση σε επιστημονικό περιοδικό el
Content SummaryStatistical conditional optimization criteria lead to the development of an iterative algorithm that starts from the matched filter (or constraint vector) and generates a sequence of filters that converges to the minimum-variance-distortionless-response (MVDR) solution for any positive definite input autocorrelation matrix. Computationally, the algorithm is a simple, noninvasive, recursive procedure that avoids any form of explicit autocorrelation matrix inversion, decomposition, or diagonalization. Theoretical analysis reveals basic properties of the algorithm and establishes formal convergence. When the input autocorrelation matrix is replaced by a conventional sample-average (positive definite) estimate, the algorithm effectively generates a sequence of MVDR filter estimators; the bias converges rapidly to zero and the covariance trace rises slowly and asymptotically to the covariance trace of the familiar sample-matrix-inversion (SMI) estimator. In fact, formal convergence of the estimator sequence to the SMI estimate is established. However, for short data records, it is the early, nonasymptotic elements of the generated sequence of estimators that offer favorable bias covariance balance and are seen to outperform in mean-square estimation error, constraint-LMS, RLS-type, orthogonal multistage decomposition, as well as plain and diagonally loaded SMI estimates. An illustrative interference suppression example is followed throughout this presentationen
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2015-10-23-
Date of Publication2001-
SubjectAdaptive filtersen
Subjectalgorithmsen
Subjectcode division multiaccessen
Subject estimationen
Subject interference suppressionen
Subjectiterative methodsen
Subjectleast mean square methodsen
Bibliographic CitationD. A. Pados and G. N. Karystinos, “An iterative algorithm for the computation of the MVDR filter,” IEEE Transactions on Signal Processing, vol. 49, no. 2, pp. 290-300, Feb. 2001. doi: 10.1109/78.902111en

Services

Statistics