Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Identification of significant metabolic markers from MRSI data for brain cancer classification

Zervakis Michalis, Michalis E. Blazadonakis, Geert J. Postma, Arend Heerschap, Michail G. Kounelakis

Simple record


URIhttp://purl.tuc.gr/dl/dias/45FA353A-A535-4181-A124-B84604612246-
Identifierhttps://doi.org/10.1109/BIBE.2008.4696668-
Languageen-
Extent7 pagesen
TitleIdentification of significant metabolic markers from MRSI data for brain cancer classificationen
CreatorZervakis Michalisen
CreatorΖερβακης Μιχαληςel
CreatorMichalis E. Blazadonakisen
Creator Geert J. Postmaen
CreatorArend Heerschapen
CreatorMichail G. Kounelakisen
PublisherInstitute of Electrical and Electronics Engineersen
Content SummaryInvestigation of the significance of metabolites peak area ratios derived from brain magnetic resonance spectroscopic imaging (MRSI) spectra, in brain tumors classification, has been applied. Results have shown that in most binary classifications using SVM and LSSVM classifiers, the accuracy achieved was greater than 0.90 AUC except the case of Gliomas grade 2 vs Gliomas grade 3 where 0.84 AUC was recorded due to the great heterogeneity of these two types of tumor. The minimum but also biologically significant set of features (markers), where maximum AUCs recorded, was derived. Ratios of N-acetyl-aspartate, choline, creatine and lipids metabolites found to play the most crucial role in brain tumors discrimination. The biological importance of these markers was also verified by literature. Finally the influence of four magnetic resonance image (MRI) intensities on the classification process was also measured. It was found that MRI data do not improve significantly the classification accuracies.en
Type of ItemΠλήρης Δημοσίευση σε Συνέδριοel
Type of ItemConference Full Paperen
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2015-10-24-
Date of Publication2008-
SubjectClinical laboratory techniciansen
SubjectMedical laboratory techniciansen
Subjectmedical technologistsen
Subjectclinical laboratory techniciansen
Subjectmedical laboratory techniciansen
SubjectSystems, Neuroadaptive (Bioengineering)en
Subjectneuroadaptive systems bioengineeringen
Subjectsystems neuroadaptive bioengineeringen
Bibliographic CitationM. G. Kounelakis, M. E. Zervakis, M. E. Blazadonakis, G. J. Postma, L.M. Buydens, A. Heerschap, X. Kotsiakis ,"Identification of significant metabolic markers from MRSI data for brain cancer classification ,"in 2008 8th IEEE Intern.Conf. on BioInf.s and BioEngineering ,pp.1-6.doi:10.1109/BIBE.2008.4696668en

Services

Statistics