URI | http://purl.tuc.gr/dl/dias/EFFBEAF5-D915-4896-9E48-296277EB93AF | - |
Αναγνωριστικό | http://www.sciencedirect.com/science/article/pii/S0377042707000702 | - |
Αναγνωριστικό | https://doi.org/10.1016/j.cam.2007.02.003 | - |
Γλώσσα | en | - |
Μέγεθος | 27 pages | en |
Τίτλος | Relaxation approximation to bed-load sediment transport | en |
Δημιουργός | Delis Anargyros | en |
Δημιουργός | Δελης Αναργυρος | el |
Δημιουργός | I. Papoglou | en |
Εκδότης | Elsevier | en |
Περίληψη | In this work we propose and apply a numerical method based on finite volume relaxation approximation for computing the bed-load sediment transport in shallow water flows, in one and two space dimensions. The water flow is modeled by the well-known nonlinear shallow water equations which are coupled with a bed updating equation. Using a relaxation approximation, the nonlinear set of equations (and for two different formulations) is transformed to a semilinear diagonalizable problem with linear characteristic variables. A second order MUSCL-TVD method is used for the advection stage while an implicit–explicit Runge–Kutta scheme solves the relaxation stage. The main advantages of this approach are that neither Riemann problem solvers nor nonlinear iterations are required during the solution process. For the two different formulations, the applicability and effectiveness of the presented scheme is verified by comparing numerical results obtained for several benchmark test problems. | en |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2015-10-25 | - |
Ημερομηνία Δημοσίευσης | 2008 | - |
Θεματική Κατηγορία | Finite volume | en |
Θεματική Κατηγορία | Relaxation methods | en |
Θεματική Κατηγορία | Bed-load sediment transport | en |
Θεματική Κατηγορία | Shallow water equations | en |
Βιβλιογραφική Αναφορά | A. I. Delis and I. Papoglou, "Relaxation approximation to bed-load sediment transport," J. Computational Appl. Math., vol. 213, no. 2 pp. 521-546, Apr. 2008. doi:10.1016/j.cam.2007.02.003 | en |