Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Time-frequency analysis methods to quantify the time-varying microstructure of sleep EEG spindles: possibility for dementia biomarkers?

Zervakis Michail, Sakkalis, Vangelis, Economou, Nicolas 1953-1993, Ktonas, P. Y, Soldatos, Christos, Xanthopoulos, Petros, Paparrigopoulos, T, Golemati, S, Ortigueira, Manuel Duarte, Tsekou H., Bonakis A., Theodoropoulos P., Vassilopoulos D., Papageorgiou S. G.

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/B9C0A173-8271-43DD-9EAB-6246DC3EFA2A-
Αναγνωριστικόhttps://doi.org/10.1016/j.jneumeth.2009.09.001-
Αναγνωριστικόhttps://www.sciencedirect.com/science/article/pii/S0165027009004920?via%3Dihub-
Γλώσσαen-
Μέγεθος10 pagesen
ΤίτλοςTime-frequency analysis methods to quantify the time-varying microstructure of sleep EEG spindles: possibility for dementia biomarkers?en
ΔημιουργόςZervakis Michailen
ΔημιουργόςΖερβακης Μιχαηλel
ΔημιουργόςSakkalis, Vangelisen
ΔημιουργόςEconomou, Nicolas 1953-1993en
ΔημιουργόςKtonas, P. Yen
ΔημιουργόςSoldatos, Christosen
ΔημιουργόςXanthopoulos, Petrosen
ΔημιουργόςPaparrigopoulos, Ten
ΔημιουργόςGolemati, Sen
ΔημιουργόςOrtigueira, Manuel Duarteen
ΔημιουργόςTsekou H.en
ΔημιουργόςBonakis A.en
ΔημιουργόςTheodoropoulos P.en
ΔημιουργόςVassilopoulos D.en
ΔημιουργόςPapageorgiou S. G.en
ΕκδότηςElsevieren
ΠερίληψηThe time-varying microstructure of sleep EEG spindles may have clinical significance in dementia studies and can be quantified with a number of techniques. In this paper, real and simulated sleep spindles were regarded as AM/FM signals modeled by six parameters that define the instantaneous envelope (IE) and instantaneous frequency (IF) waveforms for a sleep spindle. These parameters were estimated using four different methods, namely the Hilbert transform (HT), complex demodulation (CD), matching pursuit (MP) and wavelet transform (WT). The average error in estimating these parameters was lowest for HT, higher but still less than 10% for CD and MP, and highest (greater than 10%) for WT. The signal distortion induced by the use of a given method was greatest in the case of HT and MP. These two techniques would necessitate the removal of about 0.4 s from the spindle data, which is an important limitation for the case of spindles with duration less than 1 s. Although the CD method may lead to a higher error than HT and MP, it requires a removal of only about 0.23 s of data. An application of this sleep spindle parameterization via the CD method is proposed, in search of efficient EEG-based biomarkers in dementia. Preliminary results indicate that the proposed parameterization may be promising, since it can quantify specific differences in IE and IF characteristics between sleep spindles from dementia subjects and those from aged controls.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2015-10-26-
Ημερομηνία Δημοσίευσης2009-
Θεματική ΚατηγορίαBasic medical sciencesen
Θεματική ΚατηγορίαBasic sciences, Medicalen
Θεματική ΚατηγορίαBiomedical sciencesen
Θεματική ΚατηγορίαHealth sciencesen
Θεματική ΚατηγορίαPreclinical sciencesen
Θεματική ΚατηγορίαSciences, Medicalen
Θεματική Κατηγορίαmedical sciencesen
Θεματική Κατηγορίαbasic medical sciencesen
Θεματική Κατηγορίαbasic sciences medicalen
Θεματική Κατηγορίαbiomedical sciencesen
Θεματική Κατηγορίαhealth sciencesen
Θεματική Κατηγορίαpreclinical sciencesen
Θεματική Κατηγορίαsciences medicalen
Θεματική ΚατηγορίαSleep spindlesen
Θεματική ΚατηγορίαAM/FM signalsen
Θεματική ΚατηγορίαInstantaneous envelopeen
Θεματική ΚατηγορίαInstantaneous frequencyen
Θεματική ΚατηγορίαBiomarkersen
Θεματική ΚατηγορίαDementiaen
Βιβλιογραφική ΑναφοράP. Y. Ktonas, S. Golemati, P. Xanthopoulos, V. Sakkalis, M. D. Ortigueira, H. Tsekou, M. Zervakis, T. Paparrigopoulos, A. Bonakis, N. T. Economou, P. Theodoropoulos, S. G. Papageorgiou, D. Vassilopoulos and C. R. Soldatos ,"Time–frequency analysis methods to quantify the time-varying microstructure of sleep EEG spindles: possibility for dementia biomarkers?," J. of Neur. Methods, vol. 185, no. 1, pp. 133–142, Dec. 2009. doi: 10.1016/j.jneumeth.2009.09.001en

Υπηρεσίες

Στατιστικά