URI | http://purl.tuc.gr/dl/dias/B3F1A843-FFF7-4434-803F-243849F9F456 | - |
Identifier | https://doi.org/10.1109/TSMCB.2006.887427 | - |
Language | en | - |
Extent | 11 pages | en |
Title | Additive support vector machines for pattern classification | en |
Creator | Zopounidis Konstantinos | en |
Creator | Ζοπουνιδης Κωνσταντινος | el |
Creator | Doumpos, Michael | en |
Creator | Golfinopoulou ,V | en |
Publisher | Institute of Electrical and Electronics Engineers | en |
Content Summary | Support vector machines (SVMs) are one of the most popular methodologies for the design of pattern classification systems with sound theoretical foundations and high generalizing performance. The SVM framework focuses on linear and nonlinear models that maximize the separating margin between objects belonging in different classes. This paper extends the SVMmodeling context toward the development of additive models that combine the simplicity and transparency/interpretability of linear classifiers with the generalizing performance of nonlinear models. Experimental results are also presented on the performance of the new methodology over existing SVM techniques | en |
Type of Item | Peer-Reviewed Journal Publication | en |
Type of Item | Δημοσίευση σε Περιοδικό με Κριτές | el |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2015-10-28 | - |
Date of Publication | 2007 | - |
Bibliographic Citation | M. Doumpos, C. Zopounidis, V. Golfinopoulou ," Additive support vector machines for pattern classification," IEEE Trans. of Systems, Man and Cyb. – Part B, vol. 37, no. 3,pp. 540 - 550,Ma. 2007.doi:10.1109/TSMCB.2006.887427 | en |