Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Maximum and minimum solutions for nonlinear parabolic problems with discontinuities

Kandylakis Dimitrios, Papageorgiou Nikolaos S.

Simple record


URIhttp://purl.tuc.gr/dl/dias/D4F23064-C4F2-450C-8C62-CE5D236245A4-
Identifierhttps://doi.org/10.1007/BF02841551-
Languageen-
Extent8en
TitleMaximum and minimum solutions for nonlinear parabolic problems with discontinuitiesen
CreatorKandylakis Dimitriosen
CreatorΚανδυλακης Δημητριοςel
CreatorPapageorgiou Nikolaos S. en
PublisherIndian Academy of Sciencesen
DescriptionΔημοσίευση σε επιστημονικό περιοδικό el
Content SummaryIn this paper we examine nonlinear parabolic problems with a discontinuous right hand side. Assuming the existence of an upper solution φ and a lower solution ψ such that ψ ≤ φ, we establish the existence of a maximum and a minimum solution in the order interval [ψ, φ]. Our approach does not consider the multivalued interpretation of the problem, but a weak one side “Lipschitz” condition on the discontinuous term. By employing a fixed point theorem for nondecreasing maps, we prove the existence of extremal solutions in [ψ, φ for the original single valued version of the problem.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2015-10-29-
Date of Publication1998-
SubjectUpper solutionen
Subjectlower solutionen
Subjectevolution tripleen
Subjectcompact embedding en
Subjectintegration by partsen
SubjectSobolev spaceen
Subjectregular coneen
Bibliographic CitationD.A. Kandilakis, N.S. Papageorgiou, "Maximun and minimum solutions for nonlinear parabolic problems with discontinuities," Proceedings of the Indian Academy of Sciences - Mathematical Sciences, vol. 108, no. 2, pp. 179-187, Jun. 1998. doi: 10.1007/BF02841551en

Services

Statistics