URI | http://purl.tuc.gr/dl/dias/509DC46F-5781-4063-8C94-E02B73A72C77 | - |
Αναγνωριστικό | ftp://ftp2.de.freebsd.org/pub/EMIS/journals/EJDE/2005/57/kandilakis.pdf | - |
Γλώσσα | en | - |
Μέγεθος | 11 | en |
Τίτλος | A multiplicity result for quasilinear problems with convex and
concave nonlinearities and nonlinear boundary conditions in unbounded domains | en |
Δημιουργός | Kandylakis Dimitrios | en |
Δημιουργός | Κανδυλακης Δημητριος | el |
Περιγραφή | Δημοσίευση σε επιστημονικό περιοδικό | el |
Περίληψη | We study the following quasilinear problem with nonlinear boundary
conditions
−∆pu = λa(x)|u|
p−2u + k(x)|u|
q−2u − h(x)|u|
s−2u, in Ω,
|∇u|
p−2∇u · η + b(x)|u|
p−2u = 0 on ∂Ω,
where Ω is an unbounded domain in RN with a noncompact and smooth
boundary ∂Ω, η denotes the unit outward normal vector on ∂Ω, ∆pu =
div(|∇u|
p−2∇u) is the p-Laplacian, a, k, h and b are nonnegative essentially
bounded functions, q < p < s and p
∗ < s. The properties of the first eigenvalue
λ1 and the associated eigenvectors of the related eigenvalue problem are
examined. Then it is shown that if λ < λ1, the original problem admits an infi-
nite number of solutions one of which is nonnegative, while if λ = λ1 it admits
at least one nonnegative solution. Our approach is variational in character | el |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2015-10-29 | - |
Ημερομηνία Δημοσίευσης | 2005 | - |
Βιβλιογραφική Αναφορά | D.A. Kandilakis, "A multiplicity result for quasilinear problems with convex and
concave nonlinearities and nonlinear boundary conditions in unbounded domain,"Electronic Journal of Differential Equations, vol. 2005, no. 57, pp. 1–12, 2005. | en |