Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

High-order accurate numerical pressure correction based on geometric multiGrid schemes for the incompressible navier-stokes equations

Mathioudakis Emmanouil, Mandikas Vasileios, Kampanis, Nikolaos A, John A. Ekarinaris

Simple record


URIhttp://purl.tuc.gr/dl/dias/B52FC291-6E63-4C03-B3AE-A57128893C48-
Identifierhttp://www.iacm.forth.gr/_docs/pubs/3/Kampanis/Personal_Website/NUMAN%202010%20Proceedings%20p149.pdf-
Languageen-
Extent9 pagesen
TitleHigh-order accurate numerical pressure correction based on geometric multiGrid schemes for the incompressible navier-stokes equationsen
CreatorMathioudakis Emmanouilen
CreatorΜαθιουδακης Εμμανουηλel
CreatorMandikas Vasileiosen
CreatorΜανδικας Βασιλειοςel
CreatorKampanis, Nikolaos Aen
CreatorJohn A. Ekarinarisen
Content Summary ForthenumericalsolutionofincompressibleNavier-Stokesequations using a high order accurate discretization method a global pressure correction method can applied. This is equivalently with the solution of a Poisson-type boundary value problem at each time step which is the most computationally intense procedure of the numerical method. In this work, several Multi-Grid schemes are developed for the numerical solution of the large and sparse linear system arising from the discretization of the Poisson-type pressure correction on staggered grids. Multigrid techniques are not straightforward in this case, because the coarse grid does not constitute part of the fine grid. Appropriate restriction and extension operators are designed for the efficient application of multigrid proce- dure. The performance investigation using the V-cycle, W-cycle and Full Multi- Grid algorithms, resulted that multigrid schemes can accelerate significantly the numerical solution process.en
Type of ItemΠλήρης Δημοσίευση σε Συνέδριοel
Type of ItemConference Full Paperen
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2015-10-29-
Date of Publication2010-
SubjectGreek mathematicsen
Subjectmathematics greeken
Subjectgreek mathematicsen
Subject--Cases, clinical reports, statisticsen
Subject--Statistical dataen
Subjectstatisticsen
Subjectcases clinical reports statisticsen
Subjectstatistical dataen
Bibliographic CitationV. G. Mandikas, E.N. Mathioudakis, N. A. Kampanis , J. A. Ekaterinaris .(2010). High-order accurate numerical pressure correction based on Geometric Multigrid schemes for the incompressible navier stokes equations.Presented at Conference in Numerical Analysis.[online].Available:http://www.iacm.forth.gr/_docs/pubs/3/Kampanis/Personal_Website/NUMAN%202010%20Proceedings%20p149.pdfen

Services

Statistics