URI | http://purl.tuc.gr/dl/dias/CB569857-B5F2-4C03-A7F2-DA473D508E60 | - |
Identifier | https://doi.org/10.1080/01932691.2013.809505 | - |
Language | en | - |
Extent | 7 | en |
Title | Experimental study
and numerical modelling of rheological and flow behaviour of xanthan gum solutions using artificial
neural network | en |
Creator | Razi Meisam Mirarab | en |
Creator | Kelesidis Vasilis | en |
Creator | Κελεσιδης Βασιλειος | el |
Creator | Maglione Roberto | en |
Creator | Ghiass Majid | en |
Creator | Ghayyem Mohammad Ali | en |
Publisher | Taylor & Francis | en |
Description | Δημοσίευση σε επιστημονικό περιοδικό | el |
Content Summary | This study investigated effect of temperature, concentration, and shear rate on rheological properties of xanthan gum aqueous solutions using a Couette viscometer at temperatures between 25°C and 55°C and concentrations of 0.25 wt% to 1.0 wt%. The Herschel–Bulkley model described very well the non-Newtonian behavior of xanthan gum solutions. Shear rate, temperature, and concentration affected apparent viscosity and an equation was proposed for the temperature and concentration effect valid for each shear rate. This article also presents an artificial neural network (ANN) model to predict apparent viscosity. Based on statistical analysis, the ANN method estimated viscosity with high accuracy and low error. | en |
Type of Item | Peer-Reviewed Journal Publication | en |
Type of Item | Δημοσίευση σε Περιοδικό με Κριτές | el |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2015-10-30 | - |
Date of Publication | 2014 | - |
Subject | Artificial neural network | en |
Subject | drilling fluid | en |
Subject | Herschel–Bulkley | en |
Subject | rheological properties | en |
Subject | xanthan gum | en |
Bibliographic Citation | M. Mirarab Razi, V.C. Kelessidis, R. Maglione, M. Ghiass, M.A. Ghayyem, "Experimental study and numerical modelling of rheological and flow behaviour of xanthan gum solutions using artificial neural network," Journal of Dispersion Science and Technology, vol. 35, no. 12, pp. 1793-1800, 2014. doi: 10.1080/01932691.2013.809505
| en |