Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Fast algorithms for phone classification and recognition using segment-based models

Digalakis Vasilis, Ostendorf M., Rohlicek J. R.

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/E2EA7355-151C-41CB-BE98-13BD40A3AD48
Έτος 1992
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά V. Digalakis, M. Ostendorf and J. R. Rohlicek, "Fast algorithms for phone classification and recognition using segment-based models," IEEE Trans. Signal Process., vol. 40, no. 12, pp. 2885-2896, Dec. 1992. doi:10.1109/78.175733 https://doi.org/10.1109/78.175733
Εμφανίζεται στις Συλλογές

Περίληψη

Methods for reducing the computation requirements of joint segmentation and recognition of phones using the stochastic segment model are presented. The approach uses a fast segment classification method that reduces computation by a factor of two to four, depending on the confidence of choosing the most probable model. A split-and-merge segmentation algorithm is proposed as an alternative to the typical dynamic programming solution of the segmentation and recognition problem, with computation savings increasing proportionally with model complexity. Although the current recognizer uses context-independent phone models, the results reported for the TIMIT database for speaker-independent joint segmentation and recognition are comparable to those of systems that use context information

Υπηρεσίες

Στατιστικά