Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Training issues and channel equalization techniques for the construction of telephone acoustic models using a high-quality speech corpus

Neumeyer Leonardo, Digalakis Vasilis, Weintraub M.

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/A626F192-FFCC-4C9F-B53E-E0F41DB33825-
Αναγνωριστικόhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=326617-
Αναγνωριστικόhttps://doi.org/10.1109/89.326617-
Γλώσσαen-
Μέγεθος8 pagesen
ΤίτλοςTraining issues and channel equalization techniques for the construction of telephone acoustic models using a high-quality speech corpusen
ΔημιουργόςNeumeyer Leonardoen
ΔημιουργόςDigalakis Vasilisen
ΔημιουργόςΔιγαλακης Βασιληςel
ΔημιουργόςWeintraub M.en
ΕκδότηςInstitute of Electrical and Electronics Engineersen
ΠερίληψηWe describe an approach for the estimation of acoustic phonetic models that will be used in a hidden Markov model (HMM) recognizer operating over the telephone. We explore two complementary techniques to developing telephone acoustic models. The first technique presents two new channel compensation algorithms. Experimental results on the Wall Street Journal corpus show no significant improvement over sentence-based cepstral-mean removal. The second technique uses an existing “high-quality” speech corpus to train acoustic models that are appropriate for the switchboard credit card task over long-distance telephone lines. Experimental results show that cross-database acoustic training yields performance similar to that of conventional task-dependent acoustic trainingen
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2015-11-02-
Ημερομηνία Δημοσίευσης1994-
Θεματική ΚατηγορίαAutomatic speech recognitionen
Βιβλιογραφική ΑναφοράL. Neumeyer, V. Digalakis and M. Weintraub, "Training issues and channel equalization techniques for the construction of telephone acoustic models using a high-quality speech corpus," IEEE Trans. Speech Audio Process., vol. 2, no. 4, pp. 590-597, Oct. 1994. doi:10.1109/89.326617en

Υπηρεσίες

Στατιστικά