URI | http://purl.tuc.gr/dl/dias/DB6996CE-C724-4B6F-94FC-645EF0768387 | - |
Identifier | https://doi.org/10.1145/2614106.2614157 | - |
Language | en | - |
Extent | 1 page | en |
Title | High level saliency prediction for smart game balancing | en |
Creator | Mania Aikaterini | en |
Creator | Μανια Αικατερινη | el |
Creator | George Alex Koulieris | en |
Creator | George Drettakis | en |
Creator | Douglas Cunningham | en |
Publisher | Association for Computing Machinery | en |
Content Summary | Predicting visual attention can significantly improve scene design, interactivity and
rendering. For example, image synthesis can be accelerated by reducing computation on
non-attended scene regions; attention can also be used to improve LOD. Most previous
attention models are based on low-level image features, as it is computationally and
conceptually challenging to take into account highlevel factors such as scene context,
topology or task. | en |
Type of Item | Πλήρης Δημοσίευση σε Συνέδριο | el |
Type of Item | Conference Full Paper | en |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2015-11-02 | - |
Date of Publication | 2014 | - |
Bibliographic Citation | G.A. Koulieris, G. Drettakis, D. Cunningham, K. Mania ,High level saliency prediction for smart game balancing,"in 2014 ACM SIGGRAPH ,pp.73-73.doi:10.1145/2614106.2614157
| en |