Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

A hybrid particle swarm optimization algorithm for clustering analysis

Matsatsinis Nikolaos, Marinakis Ioannis, Marinaki Magdalini

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/2FCC6232-9E01-4327-941B-91B819C5AF2F
Έτος 2007
Τύπος Πλήρης Δημοσίευση σε Συνέδριο
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά Y. Marinakis, M. Marinaki, N. Matsatsinis ,"A hybrid particle Swarm optimization algorithm for clustering analysis,"in 2007 9th Intern. Conf. (DaWaK),pp.241-250.doi:10.1007/978-3-540-74553-2_22 https://doi.org/10.1007/978-3-540-74553-2_22
Εμφανίζεται στις Συλλογές

Περίληψη

Clustering is a very important problem that has been addressed in many contexts and by researchers in many disciplines. This paper presents a new stochastic nature inspired methodology, which is based on the concepts of Particle Swarm Optimization (PSO) and Greedy Randomized Adaptive Search Procedure (GRASP), for optimally clustering N objects into K clusters. The proposed algorithm (Hybrid PSO-GRASP) for the solution of the clustering problem is a two phase algorithm which combines a PSO algorithm for the solution of the feature selection problem and a GRASP for the solution of the clustering problem. Due to the nature of stochastic and population-based search, the proposed algorithm can overcome the drawbacks of traditional clustering methods. Its performance is compared with other popular stochastic/metaheuristic methods like genetic algorithms and tabu search. Results from the application of the methodology to a survey data base coming from the Paris olive oil market and to data sets from the UCI Machine Learning Repository are presented.

Υπηρεσίες

Στατιστικά