Το work with title Computational intelligence for gas imports forecasting by Atsalakis Georgios, Ioannou Sofia-Evaggelia, Zopounidis Konstantinos is licensed under Creative Commons Attribution 4.0 International
Bibliographic Citation
G. Atsalakis, S.-E. Ioannou and C. Zopounidis, "Computational intelligence for gas imports forecasting", Int. J. Financ. Eng. Risk Manage., vol. 2, no. 1, pp. 17-29, 2015. doi:10.1504/IJFERM.2015.068854
https://doi.org/10.1504/IJFERM.2015.068854
This paper investigates the ability to forecast the natural gas imports in Greece, using artificial intelligent methods. The Adaptive Neuro-Fuzzy Inference System (ANFIS) model and Artificial Neural Networks (ANN) model were developed. The overall gas import data required for the model were collected from Greek gas imports. The results of the developed models were compared with the actual data imports. Main statistical errors have been calculated in order to examine the forecasting accuracy of the proposed models. Further evaluation of the proposed models took place in comparison to the results with those of Autoregressive (AR) and Autoregressive Moving Average (ARMA). The results showed that gas import forecasting estimations using the ANFIS and ANN model were very encouraged. In terms of forecasting performance, it is clear from the empirical evidence that the ANFIS model outperforms artificial neural network and two other conventional models (AR and ARMA).