Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Discretization of the phase space for a q-deformed harmonic oscillator with q a root of unity

Bonatsos, Dennis, Daskaloyannis C. , Ellinas Dimosthenis, Faessler, Amand

Simple record


URIhttp://purl.tuc.gr/dl/dias/93CA3DC2-3E51-41FA-9D26-216776519464-
Identifierhttp://www.sciencedirect.com/science/article/pii/0370269394909563-
Identifierhttps://doi.org/10.1016/0370-2693(94)90956-3-
Languageen-
Extent7 pagesen
TitleDiscretization of the phase space for a q-deformed harmonic oscillator with q a root of unityen
CreatorBonatsos, Dennisen
CreatorDaskaloyannis C. en
CreatorEllinas Dimosthenisen
CreatorΕλληνας Δημοσθενηςel
CreatorFaessler, Amanden
PublisherElsevieren
Content SummaryThe “position” and “momentum” operators for the q-deformed oscillator with q being a root of unity are proved to have discrete eigenvalues which are roots of deformed Hermite polynomials. The Fourier transform connecting the “position” and “momentum” representations is also found. The phase space of this oscillator has a lattice structure, which is a non-uniformly distributed grid. Non-equidistant lattice structures also occur in the cases of the truncated harmonic oscillator and of the q-deformed parafermionic oscillator, while the parafermionic oscillator corresponds to a uniformly distributed grid.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2015-11-09-
Date of Publication1994-
Subjectq-deformed oscillatoren
Bibliographic CitationD. Bonatsos, C. Daskaloyannis, D. Ellinas and A. Faessler, "Discretization of the phase space for a q-deformed harmonic oscillator with q a root of unity," Phys. Lett. B, vol. 331, no. 1-2, pp. 150-156, Jun. 1994. doi:10.1016/0370-2693(94)90956-3en

Services

Statistics