Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Quantization and asymptotic behaviour of εvk quantum random walk on integers

Ellinas Dimosthenis, Smyrnakis Ioannis

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/BFB6C7B6-DA3B-41A8-93F9-CE88647302F3
Έτος 2006
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά D. Ellinas and I. Smyrnakis, "Quantization and asymptotic behaviour of εvk quantum random walk on integers," Physica A Stat. Mech. Applicat., vol. 365, no. 1, pp. 222-228, Jun. 2006. doi:10.1016/j.physa.2006.01.008 https://doi.org/10.1016/j.physa.2006.01.008
Εμφανίζεται στις Συλλογές

Περίληψη

Quantization and asymptotic behaviour of a variant of discrete random walk on integers are investigated. This variant, the εVk walk, has the novel feature that it uses many identical quantum coins keeping at the same time characteristic quantum features like the quadratically faster than the classical spreading rate, and unexpected distribution cutoffs. A weak limit of the position probability distribution (pd) is obtained, and universal properties of this arch sine asymptotic distribution function are examined. Questions of driving the walk are investigated by means of a quantum optical interaction model that reveals robustness of quantum features of walker's asymptotic pd, against stimulated and spontaneous quantum noise on the coin system.

Υπηρεσίες

Στατιστικά