Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

A probabilistic rain diagnostic model based on cyclone statistical analysis

Iordanidou Vasiliki, Koutroulis Aristeidis, Tsanis Giannis

Full record


URI: http://purl.tuc.gr/dl/dias/13841DF5-A70B-4FC8-AAFE-8721FC259D84
Year 2014
Type of Item Peer-Reviewed Journal Publication
License
Details
Bibliographic Citation V. Iordanidou, A.G. Koutroulis and I.K. Tsanis, "A Probabilistic Rain Diagnostic Model Based on Cyclone Statistical Analysis, Advances in Meteorology, no. 6, pp.11. doi: 10.1155/2014/498020 https://doi.org/10.1155/2014/498020
Appears in Collections

Summary

Data from a dense network of 69 daily precipitation gauges over the island of Crete and cyclone climatological analysis over middle-eastern Mediterranean are combined in a statistical approach to develop a rain diagnostic model. Regarding the dataset, 0.5 × 0.5, 33-year (1979–2011) European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-Interim) is used. The cyclone tracks and their characteristics are identified with the aid of Melbourne University algorithm (MS scheme). The region of interest is divided into a grid mesh and for each grid the probability of rain occurrence from passing cyclones is estimated. Such probability maps are estimated for three rain intensity categories. The probability maps are evaluated for random partitions of the data as well as for selected rain periods. Cyclones passing south of Italy are found to have greater probability of producing light rain events in Crete in contrast to medium and heavy rain events which are mostly triggered by cyclones of southern trajectories. The performance of the probability maps is very satisfactory, recognizing the majority of "affecting" cyclones and rejecting most cyclones that do not trigger rain events. Statistical measures of sensitivity and specificity range between 0.5 and 0.8 resulting in effective forecasting potential.

Services

Statistics