| URI | http://purl.tuc.gr/dl/dias/B95FD666-3683-44DB-8681-8CB3C2DFEC7B | - |
| Γλώσσα | en | - |
| Μέγεθος | 3 pages | en |
| Τίτλος | Approximate policy iteration using large-margin classifiers | en |
| Δημιουργός | Lagoudakis Michael | en |
| Δημιουργός | Λαγουδακης Μιχαηλ | el |
| Περίληψη | We present an approximate policy iteration algorithm
that uses rollouts to estimate the value of each
action under a given policy in a subset of states and
a classifier to generalize and learn the improved
policy over the entire state space. Using a multiclass
support vector machine as the classifier, we
obtained successful results on the inverted pendulum
and the bicycle balancing and riding domains. | en |
| Τύπος | Πλήρης Δημοσίευση σε Συνέδριο | el |
| Τύπος | Conference Full Paper | en |
| Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
| Ημερομηνία | 2015-11-13 | - |
| Ημερομηνία Δημοσίευσης | 2003 | - |
| Θεματική Κατηγορία | Artificial Intelligence | en |
| Βιβλιογραφική Αναφορά | M.G. Lagoudakis and R. Parr, “Approximate policy iteration using large-margin classifiers,” in Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI), 2003, pp. 1432–1434. | en |