Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Learning in zero–sum team Markov games using factored value functions

Lagoudakis Michael, Parr, R.

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/FBB6EA9E-B181-4D39-8F6C-4DDB3B0278DA-
Αναγνωριστικόhttp://machinelearning.wustl.edu/mlpapers/paper_files/CN15.pdf-
Γλώσσαen-
Μέγεθος8 pagesen
ΤίτλοςLearning in zero–sum team Markov games using factored value functionsen
ΔημιουργόςLagoudakis Michaelen
ΔημιουργόςΛαγουδακης Μιχαηλel
ΔημιουργόςParr, R.en
ΠερίληψηWe present a new method for learning good strategies in zero-sum Markov games in which each side is composed of multiple agents collaborating against an opposing team of agents. Our method requires full observability and communication during learning, but the learned policies can be executed in a distributed manner. The value function is represented as a factored linear architecture and its structure determines the necessary computational resources and communication bandwidth. This approach permits a tradeoff between simple representations with little or no communication between agents and complex, computationally intensive representations with extensive coordination between agents. Thus, we provide a principled means of using approximation to combat the exponential blowup in the joint action space of the participants. The approach is demonstrated with an example that shows the efficiency gains over naive enumeration. en
ΤύποςΠλήρης Δημοσίευση σε Συνέδριοel
ΤύποςConference Full Paperen
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2015-11-13-
Ημερομηνία Δημοσίευσης2002-
Θεματική ΚατηγορίαHMMs (Hidden Markov models)en
Θεματική Κατηγορίαhidden markov modelsen
Θεματική Κατηγορίαhmms hidden markov modelsen
Βιβλιογραφική ΑναφοράM.G. Lagoudakis and R.Parr. (2002, Dec.).Learning in zero–sum team Markov games using factored value functions. [Online]. Available: http://machinelearning.wustl.edu/mlpapers/paper_files/CN15.pdfen

Υπηρεσίες

Στατιστικά