Το έργο με τίτλο Function spaces not containing ℓ1 από τον/τους δημιουργό/ούς Manousakis Antonios, Petrakis, Marina, Deliyanni,I διατίθεται με την άδεια Creative Commons Αναφορά Δημιουργού 4.0 Διεθνές
Βιβλιογραφική Αναφορά
S. A. Argyros , A. Manoussakis, M. Petrakis ,"Function spaces not containing ℓ1,"Israel J. of Mathematics , vol. 135, no. 1, pp 29-81,Dec. 2003.doi:10.1007/BF02776049
https://doi.org/10.1007/BF02776049
For Ω bounded and open subset ofBd0 andX a reflexive Banach space with 1-symmetric basis, the function spaceJF X (Ω) is defined. This class of spaces includes the classical James function space. Every member of this class is separable and has non-separable dual. We provide a proof of topological nature thatJF X (Ω) does not contain an isomorphic copy of ℓ1. We also investigate the structure of these spaces and their duals.