URI | http://purl.tuc.gr/dl/dias/3E8F358E-D09A-41B8-B420-0B4E5FB05D85 | - |
Identifier | https://doi.org/10.1007/BF02776049 | - |
Language | en | - |
Extent | 53 pages | en |
Title | Function spaces not containing ℓ1 | en |
Creator | Manousakis Antonios | en |
Creator | Μανουσακης Αντωνιος | el |
Creator | Petrakis, Marina | en |
Creator | Deliyanni,I | en |
Publisher | Springer Verlag | en |
Content Summary | For Ω bounded and open subset ofBd0 andX a reflexive Banach space with 1-symmetric basis, the function spaceJF X (Ω) is defined. This class of spaces includes the classical James function space. Every member of this class is separable and has non-separable dual. We provide a proof of topological nature thatJF X (Ω) does not contain an isomorphic copy of ℓ1. We also investigate the structure of these spaces and their duals. | el |
Type of Item | Peer-Reviewed Journal Publication | en |
Type of Item | Δημοσίευση σε Περιοδικό με Κριτές | el |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2015-11-14 | - |
Date of Publication | 2003 | - |
Bibliographic Citation | S. A. Argyros , A. Manoussakis, M. Petrakis ,"Function spaces not containing ℓ1,"Israel J. of Mathematics , vol. 135, no. 1, pp 29-81,Dec. 2003.doi:10.1007/BF02776049 | en |