A.Manousakis,"A note on certain equivalent norms on Tsirelson' s space,"Math. J. ,vol. 46 , no. 2,pp. 379-390.April. 2004.doi:10.1017/S0017089504001867
https://doi.org/10.1017/S0017089504001867
We prove that the norm $\Vert\,{\cdot}\,\Vert_{n}$ of the space $T[\mathcal{S}_{n},\theta]$ and the norm $\Vert\,{\cdot}\,\Vert_{n}^{M}$ of its modified version $T_{M}[\mathcal{S}_{n},\theta]$ are 3-equivalent. As a consequence, using the results of E. Odell and N. Tomczak-Jaegermann, we obtain that there exists a $K\,{<}\,\infty$ such that for all $n$, $\Vert\cdot\Vert_{n}^{M}$ does not $K-$ distort any subspace of Tsirelson's space $T$.