URI | http://purl.tuc.gr/dl/dias/7E972790-3BB6-4DBE-B07D-487E4A292DBA | - |
Identifier | https://doi.org/10.1017/S0017089504001867 | - |
Language | en | - |
Extent | 12 pages | en |
Title | A note on certain equivalent norms on Tsirelson' s space | en |
Creator | Manousakis Antonios | en |
Creator | Μανουσακης Αντωνιος | el |
Content Summary | We prove that the norm $\Vert\,{\cdot}\,\Vert_{n}$ of the space $T[\mathcal{S}_{n},\theta]$ and the norm $\Vert\,{\cdot}\,\Vert_{n}^{M}$ of its modified version $T_{M}[\mathcal{S}_{n},\theta]$ are 3-equivalent. As a consequence, using the results of E. Odell and N. Tomczak-Jaegermann, we obtain that there exists a $K\,{<}\,\infty$ such that for all $n$, $\Vert\cdot\Vert_{n}^{M}$ does not $K-$ distort any subspace of Tsirelson's space $T$.
| en |
Type of Item | Peer-Reviewed Journal Publication | en |
Type of Item | Δημοσίευση σε Περιοδικό με Κριτές | el |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2015-11-14 | - |
Date of Publication | 2004 | - |
Bibliographic Citation | A.Manousakis,"A note on certain equivalent norms on Tsirelson' s space,"Math. J. ,vol. 46 , no. 2,pp. 379-390.April. 2004.doi:10.1017/S0017089504001867 | en |