Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

HEAP: A highly efficient adaptive multi-processor framework

Papaefstathiou Ioannis, Brokalakis Andreas, Lavagno L. , Lazarescu M., Walters J., Kienhuis B., Schaefer F.

Simple record


URIhttp://purl.tuc.gr/dl/dias/1AED0DF7-D408-45D3-B747-16E246E7AC52-
Identifierhttps://doi.org/10.1109/DSD.2012.71-
Languageen-
TitleHEAP: A highly efficient adaptive multi-processor frameworken
CreatorPapaefstathiou Ioannisen
CreatorΠαπαευσταθιου Ιωαννηςel
CreatorBrokalakis Andreasen
CreatorLavagno L. en
CreatorLazarescu M.en
CreatorWalters J.en
CreatorKienhuis B.en
CreatorSchaefer F.en
PublisherInstitute of Electrical and Electronics Engineersen
Content SummaryWriting parallel code is difficult, especially when starting from a sequential reference implementation. Our research efforts, as demonstrated in this paper, face this challenge directly by providing an innovative toolset that helps software developers profile and parallelize an existing sequential implementation, by exploiting top-level pipeline-style parallelism. The innovation of our approach is based on the facts that a) we use both automatic and profiling-driven estimates of the available parallelism, b) we refine those estimates using metric-driven verification techniques, and c) we support dynamic recovery of excessively optimistic parallelization. The proposed toolset has been utilized to find an efficient parallel code organization for a number of real-world representative applications, and a version of the toolset is provided in an open-source manner.en
Type of ItemΠλήρης Δημοσίευση σε Συνέδριοel
Type of ItemConference Full Paperen
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2015-11-15-
Date of Publication2012-
Bibliographic CitationL. Lavagno, M. Lazarescu, J. Walters, B. Kienhuis, I. Papaefstathiou, A. Brokalakis, F. Schaefer, "HEAP: A highly efficient adaptive multi-processor framework," in 15th Euromicro Conference on Digital System Design (DSD), 2012, pp. 509 - 516. doi: 10.1109/DSD.2012.71en

Services

Statistics