Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Probabilistic neural networks for the identification of qualified audit opinions

Michael Doumpos, Pasiouras Fotios, Gaganis, Chrysovalantis

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/6B3DABC9-BAC8-4D9F-9EF5-A1CD7FA97253-
Αναγνωριστικόhttp://www.sciencedirect.com/science/article/pii/S0957417405003131-
Αναγνωριστικό10.1016/j.eswa.2005.11.003-
Γλώσσαen-
Μέγεθος11 pagesen
ΤίτλοςProbabilistic neural networks for the identification of qualified audit opinionsen
ΔημιουργόςMichael Doumposen
ΔημιουργόςΔουμπος Μιχαληςel
ΔημιουργόςPasiouras Fotiosen
ΔημιουργόςΠασιουρας Φωτιοςel
ΔημιουργόςGaganis, Chrysovalantisen
ΕκδότηςElsevieren
ΠερίληψηPrior studies that examine the application of neural networks in auditing investigate the efficiency of artificial neural networks (ANNs). In the present study, considering the well known disadvantages of artificial neural network, we propose the application of probabilistic neural networks (PNNs) that combine the computational power and flexibility of ANNs, while managing to retain simplicity and transparency. The sample consists of 264 financial statements that received a qualified audit opinion over the period 1997–2004 and 3069 unqualified ones, from 881 firms listed on the London Stock Exchange. The results demonstrate the high explanatory power of the PNN model in explaining qualifications in audit reports. The model is also found to outperform traditional ANN models, as well as logistic regression. Sensitivity analysis is used to assess the relative importance of the input variables and to analyze their role in the auditing process.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2015-11-17-
Ημερομηνία Δημοσίευσης2007-
Θεματική ΚατηγορίαProbabilistic neural networksen
Θεματική ΚατηγορίαAuditingen
Θεματική ΚατηγορίαQualified audit reportsen
Βιβλιογραφική ΑναφοράC. Gaganis, F. Pasiouras and M. Doumpos, "Probabilistic neural networks for the identification of qualified audit opinions," Expert Syst. Applicat., vol. 32, no. 1, pp. 114-124, Jan. 2007. doi:10.1016/j.eswa.2005.11.003en

Υπηρεσίες

Στατιστικά