Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Feature selection algorithms in classification problems: an experimental evaluation

Zopounidis Konstantinos, Michael Doumpos, Salappa A.

Simple record


URIhttp://purl.tuc.gr/dl/dias/FE4E3C1D-E96A-413D-AE0C-6D063D64E575-
Identifierhttp://www.tandfonline.com/doi/full/10.1080/10556780600881910-
Identifierhttps://doi.org/10.1080/10556780600881910-
Languageen-
Extent14 pagesen
TitleFeature selection algorithms in classification problems: an experimental evaluationen
CreatorZopounidis Konstantinosen
CreatorΖοπουνιδης Κωνσταντινοςel
CreatorMichael Doumposen
CreatorΔουμπος Μιχαληςel
CreatorSalappa A. en
PublisherTaylor & Francisen
Content SummaryFeature selection (FS) is a significant topic for the development of efficient pattern recognition systems. FS refers to the selection of the most appropriate subset of features that describes (adequately) a given classification task. The objective of the present paper is to perform a thorough analysis of the performance and efficiency of feature selection algorithms (FSAs). The analysis covers a variety of important issues with respect to the functionality of FSAs, such as: (a) their ability to identify relevant features, (b) the performance of the classification models developed on a reduced set of features, (c) the reduction in the number of features and (d) the interactions between different FSAs with the techniques used to develop a classification model. The analysis considers a variety of FSAs and classification methods.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2015-11-17-
Date of Publication2007-
SubjectFeature selectionen
SubjectKnowledge discoveryen
SubjectPattern recognitionen
SubjectMachine learningen
Bibliographic CitationA. Salappa, M. Doumpos and C. Zopounidis, "Feature selection algorithms in classification problems: an experimental evaluation," Optimizat. Meth. Software, vol. 22, no. 1, pp. 199-212, 2007. doi:10.1080/10556780600881910en

Services

Statistics