URI | http://purl.tuc.gr/dl/dias/6E39A482-6D68-4B2A-BA65-E3A6DF7BC3DB | - |
Identifier | http://www.tandfonline.com/doi/abs/10.1080/10556789808805680 | - |
Identifier | https://doi.org/10.1080/10556789808805680 | - |
Language | en | - |
Extent | 28 pages | en |
Title | Developing a multicriteria decision support system for financial classification problems: the finclas system | en |
Creator | Michael Doumpos | en |
Creator | Δουμπος Μιχαλης | el |
Creator | Zopounidis Konstantinos | en |
Creator | Ζοπουνιδης Κωνσταντινος | el |
Publisher | Taylor & Francis | en |
Content Summary | Several techniques and methods have been proposed in the past for the study of financial classification problems, including statistical analysis techniques, mathematical programming, multicriteria decision aid and artificial intelligence. The application of these method^ in real world problems, where the decisions have to be taken in real time, calls upoip a powerful and efficient tool for supporting practitioners financial analysts in applying these techniques. This paper presents the FINCLAS (FINancial CLASsification) decin sion support system for financial classification problems. The classification is achieved through the use of the UTADIS (UTilites Additives DIScriminantes) multicriteria decih sion aid method. The main parts of the FINCLAS system and the UTADIS method are discussed, and an application of the system is presented | en |
Type of Item | Peer-Reviewed Journal Publication | en |
Type of Item | Δημοσίευση σε Περιοδικό με Κριτές | el |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2015-11-18 | - |
Date of Publication | 1998 | - |
Subject | Financial classification | en |
Subject | Multicriteria decision aid methods | en |
Subject | Decision support systems | en |
Bibliographic Citation | C. Zopounidis and M. Doumpos, "Developing a multicriteria decision support system for financial classification problems: the finclas system," Optimizat. Meth. Software, vol. 8, no. 3-4, pp. 277-304, 1998. doi:10.1080/10556789808805680 | en |