Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Aggregation phenomena in the suspension polymerization of PVC

Diamantopoulos Evaggelos, Zoubourtikoudis I., Kiparissides, Costas

Full record


URI: http://purl.tuc.gr/dl/dias/7379F72F-B3E8-43A4-B46B-D84E4439E702
Year 2015
Type of Item Peer-Reviewed Journal Publication
License
Details
Bibliographic Citation E. Diamadopoulos, I. Zoubourtikoudis and C. Kiparissides, "Aggregation phenomena in the suspension polymerization of VCM," Colloid. Polym. Sci., vol. 268, no. 4, pp. 306-314, Apr. 1990. doi: 10.1007/BF01411673 https://doi.org/10.1007/BF01411673
Appears in Collections

Summary

In the suspension polymerization of VCM, insoluble polymer particles are formed inside the monomer droplets. The growth and aggregation of these particles are responsible for important polymer properties, such as porosity. It is well established that the most characteristic polymer particles, the primary particles, are of a narrow distribution with a size (diameter) ranging from 0.10–0.20 μm. This work studied the formation of primary particles based on the aggregation phenomena that take place inside a monomer droplet. This was done by formulating a population balance equation, which was based on the following considerations: a) polymerization occurs in both the monomer and the polymer phases; b) there is continuous formation of the basic particles in the monomer phase; c) the growth of the polymer particles occurs as a result of both polymerization in the polymer phase and aggregation of the particles; d) the colloidal properties of the particles that are responsible for the aggregation phenomena were considered to be the net result of attraction and repulsion energies.It was shown that for particles carrying a constant charge it was not possible to predict the formation of primary particles of size 0.10–0.20 μm. The particle size distribution had a mode diameter equal to the diameter of the basic particles. Consequently, the particle charge was allowed to vary in a way proportional to the particle radius raised to a power coefficient. For values of the coefficient greater than zero, i. e., when the particle charge increased during polymerization, the aggregation of the basic particles was efficient enough to result in the formation of large primary particles.

Services

Statistics