URI | http://purl.tuc.gr/dl/dias/12BF23F1-F497-4B2E-AD41-2AECE83CC8B6 | - |
Identifier | http://link.springer.com/article/10.1007/s00291-010-0231-2 | - |
Identifier | https://doi.org/10.1007/s00291-010-0231-2 | - |
Language | en | - |
Extent | 18 pages | en |
Title | Learning non-monotonic additive value functions for multicriteria decision making | en |
Creator | Michael Doumpos | en |
Creator | Δουμπος Μιχαλης | el |
Publisher | Springer Verlag | en |
Content Summary | Multiattribute additive value functions constitute an important class of models for multicriteria decision making. Such models are often used to rank a set of alternatives or to classify them into pre-defined groups. Preference disaggregation techniques have been used to construct additive value models using linear programming techniques based on the assumption of monotonic preferences. This paper presents a methodology to construct non-monotonic value function models, using an evolutionary optimization approach. The methodology is implemented for the construction of multicriteria models that can be used to classify the alternatives in pre-defined groups, with an application to credit rating. | en |
Type of Item | Peer-Reviewed Journal Publication | en |
Type of Item | Δημοσίευση σε Περιοδικό με Κριτές | el |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2015-11-18 | - |
Date of Publication | 2012 | - |
Subject | Classification | en |
Subject | Evolutionary optimization | en |
Subject | Value functions | en |
Subject | Multicriteria decision making | en |
Bibliographic Citation | M. Doumpos, "Learning non-monotonic additive value functions for multicriteria decision making," OR Spectr., vol. 34, no. 1, pp. 89-106, Jan. 2012. doi:10.1007/s00291-010-0231-2 | en |