Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Learning non-monotonic additive value functions for multicriteria decision making

Michael Doumpos

Simple record


URIhttp://purl.tuc.gr/dl/dias/12BF23F1-F497-4B2E-AD41-2AECE83CC8B6-
Identifierhttp://link.springer.com/article/10.1007/s00291-010-0231-2-
Identifierhttps://doi.org/10.1007/s00291-010-0231-2-
Languageen-
Extent18 pagesen
TitleLearning non-monotonic additive value functions for multicriteria decision makingen
CreatorMichael Doumposen
CreatorΔουμπος Μιχαληςel
PublisherSpringer Verlagen
Content SummaryMultiattribute additive value functions constitute an important class of models for multicriteria decision making. Such models are often used to rank a set of alternatives or to classify them into pre-defined groups. Preference disaggregation techniques have been used to construct additive value models using linear programming techniques based on the assumption of monotonic preferences. This paper presents a methodology to construct non-monotonic value function models, using an evolutionary optimization approach. The methodology is implemented for the construction of multicriteria models that can be used to classify the alternatives in pre-defined groups, with an application to credit rating.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2015-11-18-
Date of Publication2012-
SubjectClassificationen
SubjectEvolutionary optimizationen
SubjectValue functions en
SubjectMulticriteria decision makingen
Bibliographic CitationM. Doumpos, "Learning non-monotonic additive value functions for multicriteria decision making," OR Spectr., vol. 34, no. 1, pp. 89-106, Jan. 2012. doi:10.1007/s00291-010-0231-2en

Services

Statistics