Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

An experimental comparison of some efficient approaches for training support vector machines

Michael Doumpos

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/8C64E09A-496B-46D6-9431-F41E9D476460-
Αναγνωριστικόhttp://link.springer.com/article/10.1007/BF02941095-
Αναγνωριστικόhttps://doi.org/10.1007/BF02941095-
Γλώσσαen-
Μέγεθος12 pagesen
ΤίτλοςAn experimental comparison of some efficient approaches for training support vector machinesen
ΔημιουργόςMichael Doumposen
ΔημιουργόςΔουμπος Μιχαληςel
ΕκδότηςSpringer Verlagen
ΠερίληψηSupport Vector Machines (SVMs) are one of the most widely used techniques for developing classification and regression models. A significant portion of the recent research on SVMs is devoted to the development of efficient computational approaches for SVM training. This paper performs an experimental analysis of some approaches recently developed for training SVM classification models, including decomposition algorithms, explicit solution techniques, and linear programming. The analysis involves the generalizing performance of the SVM models and the computational efficiency of the algorithms. The results lead to useful conclusions on the performance of the training techniques and to the applicability of linear and non-linear SVM models.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2015-11-18-
Ημερομηνία Δημοσίευσης2004-
Θεματική ΚατηγορίαClassification en
Θεματική ΚατηγορίαSupport vector machines en
Θεματική ΚατηγορίαLinear programming en
Θεματική ΚατηγορίαExperimental analysisen
Βιβλιογραφική ΑναφοράM. Doumpos, "An experimental comparison of some efficient approaches for training support vector machines," Operat. Res., vol. 4, no. 1, pp. 45-56, Jan. 2004. doi:10.1007/BF02941095en

Υπηρεσίες

Στατιστικά