Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Model combination for credit risk assessment: A stacked generalization approach

Michael Doumpos, Zopounidis Konstantinos

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/6EECB131-0301-4EA6-A672-98348E328BF2-
Αναγνωριστικόhttp://link.springer.com/article/10.1007/s10479-006-0120-x-
Αναγνωριστικόhttps://doi.org/10.1007/s10479-006-0120-x-
Γλώσσαen-
Μέγεθος18 pagesen
ΤίτλοςModel combination for credit risk assessment: A stacked generalization approachen
ΔημιουργόςMichael Doumposen
ΔημιουργόςΔουμπος Μιχαληςel
ΔημιουργόςZopounidis Konstantinosen
ΔημιουργόςΖοπουνιδης Κωνσταντινοςel
ΕκδότηςKluweren
ΠερίληψηThe development of credit risk assessment models is often considered within a classification context. Recent studies on the development of classification models have shown that a combination of methods often provides improved classification results compared to a single-method approach. Within this context, this study explores the combination of different classification methods in developing efficient models for credit risk assessment. A variety of methods are considered in the combination, including machine learning approaches and statistical techniques. The results illustrate that combined models can outperform individual models for credit risk analysis. The analysis also covers important issues such as the impact of using different parameters for the combined models, the effect of attribute selection, as well as the effects of combining strong or weak models.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2015-11-18-
Ημερομηνία Δημοσίευσης2007-
Θεματική ΚατηγορίαCredit risk assessment en
Θεματική ΚατηγορίαClassification en
Θεματική ΚατηγορίαModel combination en
Θεματική ΚατηγορίαStacked generalizationen
Βιβλιογραφική ΑναφοράM. Doumpos and C. Zopounidis, "Model combination for credit risk assessment: A stacked generalization approach," Annals Operat. Res., vol. 151, no. 1, pp. 289-306, Apr. 2007. doi:10.1007/s10479-006-0120-xen

Υπηρεσίες

Στατιστικά