Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Large-scale collective entity matching

Rastogi Vibhor, Dalvi Nilesh, Garofalakis Minos

Simple record


URIhttp://purl.tuc.gr/dl/dias/284C74C9-4024-4E15-9E13-754BFF15CE0D-
Identifierhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.190.2980&rep=rep1&type=pdf-
Identifierhttps://doi.org/10.14778/1938545.1938546-
Languageen-
Extent12 pagesen
TitleLarge-scale collective entity matchingen
CreatorRastogi Vibhoren
CreatorDalvi Nileshen
CreatorGarofalakis Minosen
CreatorΓαροφαλακης Μινωςel
PublisherAssociation for Computing Machineryen
Content SummaryThere have been several recent advancements in Machine Learning community on the Entity Matching (EM) problem. However, their lack of scalability has prevented them from being applied in practical settings on large real-life datasets. Towards this end, we propose a principled framework to scale any generic EM algorithm. Our technique consists of running multiple instances of the EM algorithm on small neighborhoods of the data and passing messages across neighborhoods to construct a global solution. We prove formal properties of our framework and experimentally demonstrate the effectiveness of our approach in scaling EM algorithms.en
Type of ItemΠλήρης Δημοσίευση σε Συνέδριοel
Type of ItemConference Full Paperen
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2015-11-30-
Date of Publication2009-
SubjectDatabase managementen
Bibliographic CitationV. Rastogi, N. Dalvi and M. Garofalakis, "Large-scale collective entity matching", in 35th International Conference on Very Large Data Bases, 2009.en

Services

Statistics