Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Probabilistic declarative information extraction

Wang Daisy Zhe, Michelakis Eirinaios, Franklin Michael J., Garofalakis Minos, Hellerstein, Joseph, 1952-

Simple record


URIhttp://purl.tuc.gr/dl/dias/C8A10160-E770-48D3-8503-C457D55AADE8-
Identifierhttp://db.cs.berkeley.edu/papers/icde10-ie.pdf-
Languageen-
Extent4 pagesen
TitleProbabilistic declarative information extractionen
CreatorWang Daisy Zheen
CreatorMichelakis Eirinaiosen
CreatorFranklin Michael J.en
CreatorGarofalakis Minosen
CreatorΓαροφαλακης Μινωςel
CreatorHellerstein, Joseph, 1952-en
Content SummaryUnstructured text represents a large fraction of the world’s data. It often contains snippets of structured information (e.g., people’s names and zip codes). Information Extraction (IE) techniques identify such structured information in text. In recent years, database research has pursued IE on two fronts: declarative languages and systems for managing IE tasks, and probabilistic databases for querying the output of IE. In this paper, we make the first step to merge these two directions, without loss of statistical robustness, by implementing a state-ofthe-art statistical IE model – Conditional Random Fields (CRF) – in the setting of a Probabilistic Database that treats statistical models as first-class data objects. We show that the Viterbi algorithm for CRF inference can be specified declaratively in recursive SQL. We also show the performance benefits relative to a standalone open-source Viterbi implementation. This work opens up the optimization opportunities for queries involving both inference and relational operators over IE models.en
Type of ItemΠλήρης Δημοσίευση σε Συνέδριοel
Type of ItemConference Full Paperen
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2015-11-30-
Date of Publication2010-
SubjectInforamtion systemsen
SubjectDatabasesen
Bibliographic CitationD. Z. Wang, E. Michelakis, M. J. Franklin, M. Garofalakis and J. M. Hellerstein, "Probabilistic declarative information extraction", in 26th IEEE International Conference on Data Engineering, 2010.en

Services

Statistics