Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Probabilistic declarative information extraction

Wang Daisy Zhe, Michelakis Eirinaios, Franklin Michael J., Garofalakis Minos, Hellerstein, Joseph, 1952-

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/C8A10160-E770-48D3-8503-C457D55AADE8-
Αναγνωριστικόhttp://db.cs.berkeley.edu/papers/icde10-ie.pdf-
Γλώσσαen-
Μέγεθος4 pagesen
ΤίτλοςProbabilistic declarative information extractionen
ΔημιουργόςWang Daisy Zheen
ΔημιουργόςMichelakis Eirinaiosen
ΔημιουργόςFranklin Michael J.en
ΔημιουργόςGarofalakis Minosen
ΔημιουργόςΓαροφαλακης Μινωςel
ΔημιουργόςHellerstein, Joseph, 1952-en
ΠερίληψηUnstructured text represents a large fraction of the world’s data. It often contains snippets of structured information (e.g., people’s names and zip codes). Information Extraction (IE) techniques identify such structured information in text. In recent years, database research has pursued IE on two fronts: declarative languages and systems for managing IE tasks, and probabilistic databases for querying the output of IE. In this paper, we make the first step to merge these two directions, without loss of statistical robustness, by implementing a state-ofthe-art statistical IE model – Conditional Random Fields (CRF) – in the setting of a Probabilistic Database that treats statistical models as first-class data objects. We show that the Viterbi algorithm for CRF inference can be specified declaratively in recursive SQL. We also show the performance benefits relative to a standalone open-source Viterbi implementation. This work opens up the optimization opportunities for queries involving both inference and relational operators over IE models.en
ΤύποςΠλήρης Δημοσίευση σε Συνέδριοel
ΤύποςConference Full Paperen
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2015-11-30-
Ημερομηνία Δημοσίευσης2010-
Θεματική ΚατηγορίαInforamtion systemsen
Θεματική ΚατηγορίαDatabasesen
Βιβλιογραφική ΑναφοράD. Z. Wang, E. Michelakis, M. J. Franklin, M. Garofalakis and J. M. Hellerstein, "Probabilistic declarative information extraction", in 26th IEEE International Conference on Data Engineering, 2010.en

Υπηρεσίες

Στατιστικά