Institutional Repository
Technical University of Crete
EN  |  EL



My Space

Probabilistic data management for pervasive computing: the data furnace project

Garofalakis Minos, Brown Kurt P., Franklin Michael J., Hellerstein, Joseph, 1952-, Wang Daisy Zhe, Michelakis Eirinaios, Tancau Liviu, Wu Eugene, Jeffery Shawn R., Aipperspach Ryan

Simple record

Extent7 pagesen
TitleProbabilistic data management for pervasive computing: the data furnace projecten
CreatorGarofalakis Minosen
CreatorΓαροφαλακης Μινωςel
CreatorBrown Kurt P.en
CreatorFranklin Michael J.en
CreatorHellerstein, Joseph, 1952-en
CreatorWang Daisy Zheen
CreatorMichelakis Eirinaiosen
CreatorTancau Liviuen
CreatorWu Eugeneen
CreatorJeffery Shawn R.en
CreatorAipperspach Ryanen
PublisherInstitute of Electrical and Electronics Engineersen
Content SummaryThe wide deployment of wireless sensor and RFID (Radio Frequency IDentification) devices is one of the key enablers for next-generation pervasive computing applications, including large-scale environmental monitoring and control, context-aware computing, and “smart digital homes”. Sensory readings are inherently unreliable and typically exhibit strong temporal and spatial correlations (within and across different sensing devices); effective reasoning over such unreliable streams introduces a host of new data management challenges. The Data Furnace project at Intel Research and UC-Berkeley aims to build a probabilistic data management infrastructure for pervasive computing environments that handles the uncertain nature of such data as a first-class citizen through a principled framework grounded in probabilistic models and inference techniques.en
Type of ItemΔημοσίευση σε Συνέδριοel
Type of ItemConference Publicationen
Date of Item2015-11-30-
Date of Publication2006-
SubjectData engineeringen
Bibliographic CitationM. Garofalakis, K. P. Brown, M. J. Franklin, J. M. Hellerstein, D. Z. Wang, E. Michelakis, L. Tancau, E. Wu, S. R. Jeffery and R. Aipperspach, "Probabilistic data management for pervasive computing: the data furnace project", in IEEE Data Engineering Bulletin, vol. 29, no. 1, March 2006.en