Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

SPARTAN: A model-based semantic compression system for massive data tables

Babu Shivnath, Garofalakis Minos, Rastogi Rajeev

Simple record


URIhttp://purl.tuc.gr/dl/dias/5507F55A-78BD-4114-A824-3CB697C32ED1-
Identifierhttp://ilpubs.stanford.edu:8090/494/-
Languageen-
Extent12 pagesen
TitleSPARTAN: A model-based semantic compression system for massive data tablesen
CreatorBabu Shivnathen
CreatorGarofalakis Minosen
CreatorΓαροφαλακης Μινωςel
CreatorRastogi Rajeeven
PublisherAssociation for Computing Machineryen
Content SummaryWhile a variety of lossy compression schemes have been developed for certain forms of digital data (e.g., images, audio, video), the area of lossy compression techniques for arbitrary data tables has been left relatively unexplored. Nevertheless, such techniques are clearly motivated by the everincreasing data collection rates of modern enterprises and the need for effective, guaranteed-quality approximate answers to queries over massive relational data sets. In this paper, we propose SPARTAN , a system that takes advantage of attribute semantics and data-mining models to perform lossy compression of massive data tables. SPARTAN is based on the novel idea of exploiting predictive data correlations and prescribed error tolerances for individual attributes to construct concise and accurate Classification and Regression Tree (CaRT) models for entire columns of a table. More precisely, SPARTAN selects a certain subset of attributes for which no values are explicitly stored in the compressed table; instead, concise CaRTs that predict these values (within the prescribed error bounds) are maintained. To restrict the huge search space and construction cost of possible CaRT predictors, SPARTAN employs sophisticated learning techniques and novel combinatorial optimization algorithms. Our experimentation with several real-life data sets offers convincing evidence of the effectiveness of SPARTAN ’s model-based approach – SPARTAN is able to consistently yield substantially better compression ratios than existing semantic or syntactic compression tools (e.g., gzip) while utilizing only small data samples for model inference.en
Type of ItemΠλήρης Δημοσίευση σε Συνέδριοel
Type of ItemConference Full Paperen
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2015-12-01-
Date of Publication2001-
SubjectData managementen
SubjectData miningen
Bibliographic CitationS. Babu, M. Garofalakis and R. Rastogi, "SPARTAN: A model-based semantic compression system for massive data tables", in International Conference on Management of Data (SIGMOD 2001), May 2001, pp. 283-294.en

Services

Statistics